This review discusses the current state of research of artificial atoms (superatoms) (quasiatomic nanoheterostructures) and more complex nanostructures based on them - synthetic molecules, proposed a new model of an artificial atom, satisfactorily explaining its electronic properties, as well as the prospects for the development of the new scientific field.
| Published in | 
								Optics (Volume 3, Issue 6-1)
								 This article belongs to the Special Issue Optics and Spectroscopy of the Charge Carriers and Excitons States in Quasi - Zero - Dimensional Nanostructures  | 
						
| DOI | 10.11648/j.optics.s.2014030601.16 | 
| Page(s) | 42-47 | 
| Creative Commons | 
								 
 This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.  | 
						
| Copyright | 
								 Copyright © The Author(s), 2014. Published by Science Publishing Group  | 
						
Superatoms (Artificial Atoms), Quasimolecules (Artificial Molecules), Nanoheterostructures, Quantum Dots, Electron, Hole, Energy Spectrum
| [1] | Ashoori, R.C. (1996). Electrons in artificial atoms. Nature. 379, No. 6564, 413–419. | 
| [2] | Pokutnyi, S.I., Gorbyk, P.P. (2013). Electronic properties of nanoscale quasiatomic structures. Progr. Phys. Metal. 14, No. 4, 353 -378. | 
| [3] | Pokutnyi, S.I., Gorbyk, P.P. (2013). Superatoms in quasi-zero-dimensional nanostructures. J. Applied Chem. 1, No. 1, 44-47. | 
| [4] | Pokutnyi, S.I., Gorbyk ,P.P. (2014). Superatoms in quasiatomic nanogeterostructures: Theory. J. Applied Chem. 2, No. 4, 16 - 21. | 
| [5] | Pokutnyi, S.I. (2013). Binding energy of the exciton of a spatially separated electron and hole in quasi-zero-dimensional nanosystems. Technical Physics Letters. 39, No. 3, 233-235. | 
| [6] | Pokutnyi, S.I. (2013). On an exciton with a spatially separated electron and hole in quasi-zero-dimensional nanostructures. Semiconductors. 47, No. 6, 791-798. | 
| [7] | Pokutnyi, S.I. (2014). Theory of excitons formed from spatially separated electrons and holes in quasi- zero-dimensional semiconductor nanosytems. SOP Trans. Theoretical Physics. 1, No. 2, 55- 67. | 
| [8] | Pokutnyi, S.I. (2014). Exciton states spectroscopy in quasi-zero-dimensional nanosructures: Theory. Optics. Special Issue: Optics and spectroscopy of the charge carriers and exciton states in quasi-zero-dimensional nanostructures. 3, No.1, 2-9. | 
| [9] | Pokutnyi, S.I. (2014). Theory of excitons and excitonic quasimolecules formed from spatially separated electrons and holes in quasi-zero-dimensional nanosytems. Optics. Special Issue: Optics and spectroscopy of the charge carriers and exciton states in quasi-zero-dimensional nanostructures. 3, No.1, 10-21. | 
| [10] | Malygin, А.А., Smirnov, V.M. (2012). Chemical substances highly. News St.- Peterburg state. tehnic. univ. 15, 102-107. | 
| [11] | Lalumière, K., Sanders, B., Loo, B, Fedorov, A. (2013). Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A. 88, No. 10. 43806 –43811. | 
| [12] | Loo, B., A. Fedorov,A., K. Lalumière, K. (2013). Photon-mediated interactions between distant artificial atoms. Science. 342, No. 6165. 1494 – 1496. | 
| [13] | Bondar, N.V., Brodyn, M.S. (2010). Optical properties of semiconductor nanostructures. Physics E. 4, No. 10. 1549-1555. | 
| [14] | Dzyuba, V. P., Krasnok, A.E., Kulchin, J. N. (2010). Optical properties of the dielectric nanoparticles inserted into a dielectric matrix. Technical Physics Letters. 36, No. 21. 1-9. | 
| [15] | Kulchin, J. N., Dzyuba V. P. (2010). Nonoptical properties of the dielectric nanoparticles inserted into a dielectric matrix. Pacific Science Rev. 12, No. 1. 102-105. | 
| [16] | Bulavin, L. (2009). Thermophysical properties of carbon nanotubes in toluene under high pressure. J. Molecular Liquids. 150, No. 7, 1-3. | 
| [17] | Malyukin, Y.V. (2010). Activation nanocrystals dielectric. Radiation Measurem. 4, No. 3, 589-594. | 
| [18] | Latyshev, A.N., Ovchinnikov, O.V., Smirnov, M.S. (2011). Features of the charge transfer in the interaction of molecules with sensabilizatorov nanocrystals. J. Appl. spectroscopy. 78, No.3, 481 - 484. | 
| [19] | Suvorova,T.I., Latyshev, A.N., Ovchinnikov, O.V., Smirnov, M.S. (2012). Enhancing the luminescence of dye molecules in the presence of silver nanoparticles. J. Optical Technol. 79, No.1, 79-82. | 
| [20] | Borysenko, M.V., Bogatyrev, V.M. (2004). Application of chromium-containing silica for synthesising functional glasslike materials by the sol-gel method. J. Sol-Gel Sci. Technol. 32, No. 3, 327-331. | 
| [21] | Borysenko, M.V., Sulim, I.Y., Borysenko, L.I. (2008). Modification of fumed silica atsetilatsetonanom zirconia. Theor. Eksper. Chem. 44, No.3, 191 – 195. | 
| [22] | Pokutnyi, S.I. (2007). Exciton states in semiconductor quantum dots in framework of the modified effective mass method. Semiconductors. 41, No. 11, 1323-1400. | 
| [23] | Pokutnyi S.I. (2013). Biexcitons formed from spatially separated electrons and holes in quasi-zero-dimensional nanosystems. Semiconductors. 47, No. 12, 1626-1635. | 
| [24] | Pokutnyi, S.I., Gorbyk, P.P. (2014). Quasi-zero-dimensional nanostructures: Excitonic quasimolecules. J. Applied Chem. 2, No. 1, 1-4. | 
| [25] | Pokutnyi, S.I. (1995). Exciton in quasi-zero-dimensional nanostructures. Physics Letters A. 203, No. 5,6, 388-394. | 
| [26] | Frish, S.E. (1963). Optical spectra of atoms. Nauka, Moscow. | 
| [27] | Pokutnyi, S.I. (2005). Optical nanolaser on the heavy hole transition in semiconductor nanocrystals. Physics Letters A. 342, No. 5, 347-352. | 
| [28] | Pokutnyi, S.I., Gorbyk, P.P. (2013). Absorption of light in electron states in quasi-zero-dimensional nanostructures. Optics. 2, No. 4, 47-50. | 
APA Style
Sergey I. Pokutnyi, Petr P. Gorbyk. (2014). Superatoms and Quasimolecules in Quasi-Zero-Dimensional Nanoheterostructures: Future Research. Optics, 3(6-1), 42-47. https://doi.org/10.11648/j.optics.s.2014030601.16
ACS Style
Sergey I. Pokutnyi; Petr P. Gorbyk. Superatoms and Quasimolecules in Quasi-Zero-Dimensional Nanoheterostructures: Future Research. Optics. 2014, 3(6-1), 42-47. doi: 10.11648/j.optics.s.2014030601.16
AMA Style
Sergey I. Pokutnyi, Petr P. Gorbyk. Superatoms and Quasimolecules in Quasi-Zero-Dimensional Nanoheterostructures: Future Research. Optics. 2014;3(6-1):42-47. doi: 10.11648/j.optics.s.2014030601.16
@article{10.11648/j.optics.s.2014030601.16,
  author = {Sergey I. Pokutnyi and Petr P. Gorbyk},
  title = {Superatoms and Quasimolecules in Quasi-Zero-Dimensional Nanoheterostructures: Future Research},
  journal = {Optics},
  volume = {3},
  number = {6-1},
  pages = {42-47},
  doi = {10.11648/j.optics.s.2014030601.16},
  url = {https://doi.org/10.11648/j.optics.s.2014030601.16},
  eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.optics.s.2014030601.16},
  abstract = {This review discusses the current state of research of artificial atoms (superatoms) (quasiatomic nanoheterostructures) and more complex nanostructures based on them - synthetic molecules, proposed a new model of an artificial atom, satisfactorily explaining its electronic properties, as well as the prospects for the development of the new scientific field.},
 year = {2014}
}
											
										TY - JOUR T1 - Superatoms and Quasimolecules in Quasi-Zero-Dimensional Nanoheterostructures: Future Research AU - Sergey I. Pokutnyi AU - Petr P. Gorbyk Y1 - 2014/10/25 PY - 2014 N1 - https://doi.org/10.11648/j.optics.s.2014030601.16 DO - 10.11648/j.optics.s.2014030601.16 T2 - Optics JF - Optics JO - Optics SP - 42 EP - 47 PB - Science Publishing Group SN - 2328-7810 UR - https://doi.org/10.11648/j.optics.s.2014030601.16 AB - This review discusses the current state of research of artificial atoms (superatoms) (quasiatomic nanoheterostructures) and more complex nanostructures based on them - synthetic molecules, proposed a new model of an artificial atom, satisfactorily explaining its electronic properties, as well as the prospects for the development of the new scientific field. VL - 3 IS - 6-1 ER -